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ABSTRACT

It is shown that the satisfaction of a standard constraint qualification * 6
of mathematical programming-5> at a stationary point of a nonconvex differ-

entiable nonlinear program provides explicit numerical bounds for the set of

all Lagrange multipliers associated with the stationary point. Solution of a .

single linear program gives a sharper bound together with an achievable bound " - '

on the 1-norm of the multipliers associated with the inequality constraints.

The simplicity of obtaining these bounds contrasts sharply with the •

intractable NP-complete problem of computing an achievableupper bound on the

p-norm of the multipliers associated with the equality, constraints for integer

p 2 1
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p. 0

SIGNIFICANCE AND EXPLANATION P 0

The purpose of this work is to show that a fundamental regularity

condition of nonlinear programming contains information which provides

numerical bounds for the Lagrange multipliers of local solutions of nonlinear

programs. Lagrange multipliers play a fundamental role in stability and

perturbation analysis of nonlinear programs. I S

The responsibility for the wording and views expressed in this descriptive . _

summary lies with MRC, and not with the author of this report.
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COMPUTABLE NUMERICAL BOUNDS FOR LAGRANGE MULTIPLIERS OF

STATIONARY POINTS OF NONCONVEX DIFFERENTIABLE
NONLINEAR PROGRAMS

0. L. Mangasarian

Consider the constrained optimization problem

(1) minimize f(x) subject to g(x) 4 0, h(x) f 0

where f Rn R, g; Rn+Rm and h: Rn Rk. It is well known that if a

standard constraint qualification [2, 5]

Vgi(x)z < -e, Vh(x)z 0 for some z e Rn, and
(2) 1 •

rows of Vh(x) are linearly independent

holds at a local solution x of (1) at which f, g and h are continuously

differentiable, I - (i I gi(x) = 01, Vg(x), Vgi(x) and Vh(x) are m x n,

m x n and k x n Jacobian matrices respectively, e is a vector of ones and

m is the number of elements in I, then x is a stationary point of (1),

that is it satisfies the Karush-Kuhn-Tucker conditions [2]

(3) Vf(x) + uVg(x) + vVh(x) 0, ug(x) - 0, g(x) _ 0, u >= 0, h(x) - 0

for some Lagrange multipliers (u,v) e Rm+k. Let W denote the set of all

Lagrange multipliers which satisfy (3) for a fixed x. It follows from p

Gauvin's theorem [1] that if x is a local solution of (1), then W is

nonempty and bounded if and only if the constraint qualification (2) holds.

What we would like to point out in this note is that any z in the set Z -f

points satisfying the constraint qualification (2) for a fixed x provides an

explicit numerical bound for all (u,v) in W as follows:

(4) NuO p Vf(x)z

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work sponsored by the National Science Foundation under
Grant No. MCS-8200632.
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(5) lvO < max{IVf(x)BI , I(Vf(x) + (Vf(x)z)Vgj(x))BI I
~jeI

where B is the n x k matrix defined by

-T -T-1
(6) B Vh(x) (Vh(X)Vh(x)

and OUR denotes the p-norm ( luji for p e [1,00) and NUN.=

max jj.In particular we have the following.
1<j<m

1. Theorem. Let x be a stationary point of (1). The corresponding non-

empty set of all Lagrange multipliers W satisfying the Karush-Kuhn-Tucker

conditions (3) is bounded if and only if the constraint qualification (2)

holds, in which case each (u,v) in W is bounded by (4) -(5) for

p e110]

Proof. The nonempty set W is bounded if and only if there exists-no (U11v)

satisfying

(7) u IVg1 (x) + vVh(x) =0, u, . 0, (u1 ,v) ~d0

which by a theorem of the alternative [3, Theorem 1Wi) & (iii)], is

equivalent to the constraint qualification (2). Hence for such a case we have

for (u,v) e W and p e [1,00] that

(8) lUl < NlUN max - eu. UVg (x) +t vVh(x) + Vf(x)= 0, u 1  0}

p = 1=(U ,v)eRm+ I I

(8a) -minn [Vf ()z IVg (x)z < -e, Vh(x)z =01

zeRS

(By linear programming~ duality)
<Vf(x)z for z e z

which establishes (4).

Now, for any (u,v) e w, z e Z and p e [1,00] we have that -

(9) NvO < max (lvi0 -vVh(x) =Vf(x) + U Vg (X), u1  0}
p = pV,u1

< max {lv1 v =-(Vf(x) + U Vg (x))B, u1  0, eu1  Vf(x)z}*

-2-
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= maxip(vf(x) + u Vg (x))B I > 0, eu,< Vf(x)z}
u I

= max {IVf(x)BU , I(Vf(x) + (Vf(x)z)Vg (x))BI .

jei P "

where the last equality follows from the fact that the maxiaum of a continuous

convex function on a bounded polyhedral set is attained at a vertex [7, -. -

Corollary 32.3.4]. This establishes the bound (5).

0

2. Corollary. The bounds (4) - (5) of Theorem 1 can be sharpened by

replacing z by z where z is a solution of the solvable linear program

(8a).

We note that the bound (4) with p 1 and z = z, where z is a

solution of (8a) is implicitly given in the elegant proof of Gauvin [1] which

characterizes the nonemptiness and boundedness of W for a local solution x

of (1) by the satisfaction of the constraint qualification (2).

It is interesting to note that the first part of the constraint qualifi-

cation (2) (existence of z) gives an achievable bound on Nu,, whereas the

second part of (2) (linear independence of the rows of Vh(x)) gives a bound

on vIl , which is not necessarily achievable. It is however possible (butp

impractical for large k) to compute max _ Ivi. by solving 2k linear
(u,v)ew

programs: max max _± v..* However to obtain max livE one is faced

with the essentially impossible task (even for a moderate-sized k _ 15) of p

solving 2k linear programs: max max cv, where C is the set of 2k

cEC (u,v)eW
k

vertices of the cube y yi e Rk , -e S y e}. In fact for integer p 1

the problem max - Dvl has been shown to be an intractable NP-complete S
(u,v)ew

problem [6]. We finally note that the methods of [4] could also be used to

obtain the bounds of this work.

-3-
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